图像预处理:优化原始扫描数据
灰度化处理:将彩色图像转换为灰度图,突出标记与背景的亮度差异(如铅笔填涂区域灰度值较低)。
二值化转换:通过设定阈值(如灰度值低于 128 视为标记),将图像转化为黑白二值图,简化后续计算(例:填涂框内黑色像素占比≥30% 视为有效标记)。
噪声过滤:利用中值滤波、高斯滤波等算法,消除纸张污渍、折叠阴影等干扰(如去除面积小于 10 像素的孤立黑点)。
几何校正:通过检测选票边缘的定位标记(如 registration marks),校正因传送歪斜导致的图像旋转或缩放,确保标记位置与预设模板对齐。
特征提取与判断:识别选民的选择意图
根据选票标记类型(填涂、勾选、手写符号等),算法采用不同的特征提取策略:
(1)填涂标记识别(常见场景)
面积占比法:计算填涂框内黑色像素占比,超过阈值(如 30%-50%)则判定为有效选择。
例:选民使用 2B 铅笔填涂候选人 A 的方框,扫描后该区域黑色像素占比达 45%,算法判定为有效投票。
边缘检测法:通过 Canny 或 Sobel 算子检测填涂区域的边缘轮廓,与标准填涂形状(如矩形、圆形)比对,排除不规则标记(如笔尖打滑形成的短线)。
浓度梯度分析:填涂越均匀的区域,灰度值分布越集中,算法可通过统计像素灰度方差来区分 “认真填涂” 与 “轻微触碰”。
(2)勾选或手写符号识别
形态学分析:通过膨胀、腐蚀等形态学运算,将勾选符号(√)或手写标记(如 “○”)转换为标准形状,再与预设模板匹配。
方向特征提取:对于斜线标记(如 “/”),计算像素分布的梯度方向,判断是否符合 “勾选” 的典型角度(如 45° 或 135°)。
(3)异常标记检测
多选判定:同一候选区域内检测到多个标记(如同时填涂两个候选人框),或单票标记数超过规定(如总统选举多选 1 人),则判定为无效票。
空白票识别:所有候选区域标记面积均低于阈值,判定为未投票。
4. 结果验证与输出:确保计数准确性
重复校验:对关键标记区域进行多次扫描(如两次独立图像采集),结果一致才确认有效。
人工复核接口:对算法判定存疑的选票(如填涂面积接近阈值、标记形状模糊),生成图像供选举工作人员人工审核(如美国部分州要求对 “争议票” 进行人工查验)。
数据输出:将识别结果转换为结构化数据(如候选人 ID、得票数),同步至中央数据库或打印纸质统计表。
本产品适用于党的组织部门、政府人事部门、较大型机关企事业单位、大专院校,开展对在职干部的推荐选拔、量化测评、对单位或部门的工作评议用。另外,本产品还可作为省级组织部门年度评议表和考核表的专用干部考评机用。
系统构成:
1、配接主机四核2G以上、笔记本或台式机操作系统 Windows xp、windos7、Windows 10等。
2、高速文档扫描仪1台
3、机读选票:可以是红、蓝、绿、黄等底色或普通打印机纸。
4、现场选票激光打印机。
南昊(北京)科技有限公司面向各地、各级党委、政府、人大、政协、工会、共青团、妇联、各类型协会;面向村镇、街道、社区及有选举、评选先进、民主测评需要的单位,向他们提供专业的选举电子计票系统、选举电子计票技术咨询、选举电子计票解决方案、选举现场电子计票服务等。欢迎新老客户朋友咨询。