为确保选举公正,读票机需具备以下技术与措施:
1. 防篡改与加密技术
数据传输加密(如 SSL/TLS 协议),防止中途篡改。
区块链技术应用:部分试点项目通过区块链记录选票数据,确保不可篡改(如西弗吉尼亚州区块链投票试验)。
2. 冗余与审计机制
纸质选票备份:电子读票机需配合纸质选票,供人工审计或系统故障时使用。
双重计数验证:部分系统采用两台读票机独立计数,结果一致才确认有效。
3. 抗干扰与稳定性设计
防电磁干扰:设备硬件需通过电磁兼容性(EMC)测试,避免外界信号干扰。
离线模式:支持断电或网络中断时离线计数,恢复后同步数据。
4. 用户验证与权限控制
操作员身份认证:仅授权人员可访问系统后台,操作记录全程留痕。
选票防伪:通过水印、荧光油墨等物理防伪技术,防止伪造选票。
核心硬件架构:光学识别的物理基础
光学扫描式读票机的硬件系统主要由以下部分构成,共同实现选票标记的捕捉与转换:
硬件组件 功能描述
光源模块 - 通常采用 LED 光源(如红光、红外光),均匀照射选票表面,确保标记区域反光差异明显。
- 部分设备配备多波长光源,适应不同墨水(如荧光墨水)的识别需求。
图像传感器 - 多为 CCD(电荷耦合器件)或 CMOS 图像传感器,分辨率通常在 300-600dpi,确保捕捉填涂细节(如铅笔浓度、墨水边缘)。
- 扫描速度可达每秒 10-30 张选票,满足大规模选举效率需求。
光学透镜组 - 聚焦光线至传感器,校正图像畸变,确保标记位置映射到像素坐标。
传动机构 - 通过滚轮或传送带匀速输送选票,避免扫描时抖动导致图像模糊。
信号处理电路 - 将传感器捕捉的模拟信号转换为数字图像数据(如 RGB 或灰度值),为后续算法处理做准备。
图像预处理:优化原始扫描数据
灰度化处理:将彩色图像转换为灰度图,突出标记与背景的亮度差异(如铅笔填涂区域灰度值较低)。
二值化转换:通过设定阈值(如灰度值低于 128 视为标记),将图像转化为黑白二值图,简化后续计算(例:填涂框内黑色像素占比≥30% 视为有效标记)。
噪声过滤:利用中值滤波、高斯滤波等算法,消除纸张污渍、折叠阴影等干扰(如去除面积小于 10 像素的孤立黑点)。
几何校正:通过检测选票边缘的定位标记(如 registration marks),校正因传送歪斜导致的图像旋转或缩放,确保标记位置与预设模板对齐。
全流程质量控制节点
阶段 具体措施
选举前 - 模拟测试:用至少 1000 张包含各类边缘场景的模拟选票(如重度折叠票、墨水渗透票、轻微填涂票)进行压力测试,识别错误率需<0.01% 方可上线。
- 第三方认证:通过国际标准(如美国 FEC 的投票系统认证、ISO 25010 软件质量模型)的合规性审计。
选举中 - 实时异常报警:当连续 5 张选票出现 “多选” 或 “空白票” 比例超过历史均值 2 倍时,系统自动暂停并提示工作人员检查(如巴西大选读票机的实时监控 dashboard)。
- 双人员工值守:每台读票机需 2 名选举工作人员同时在场,一人操作、一人复核,避免单人误操作。
选举后 - 人工抽样审计:按选区随机抽取 5%-10% 的纸质选票与扫描数据比对,误差率超过 0.5% 时启动全量重新计票(如 2020 年美国亚利桑那州审计中,人工复核 5000 张选票,机器计数准确率为 99.87%)。
- 审计日志留存:记录每台读票机的开机时间、扫描张数、异常处理记录等,保存至少 22 个月(符合美国 HAVA 法案要求)。