常用PID调节器/温控仪控制算法包括常规PID、模糊控制、神经网络、Fuzzy-PID、神经网络PID、模糊神经网络、遗传PID及广义预测等算法。
常规PID控制易于建立线性温度控制系统被控对象模型;模糊控制基于规则库,并以或增量形式给出控制决策;神经网络控制采用数理模型模拟生物神经细胞结构,并用简单处理单元连接成复杂网络;Puzzy-PID为线性控制,且结合模糊与PID控制优点。
温度控制系统是变参数、有时滞和随机干扰的动态系统,为达到满意的控制效果,具有许多控制方法。
遗传PID控制是将控制器参数构成基因型,将性能指标构成相应的适应度,利用遗传算法来整定控制器的参数,不要求系统是否为连续可调,能否以显式表示。基于遗传算法的自适应PID控制的原理框图如7。遗传PID温控系统将测量值与给定值进行比较,用遗传算法来优化PID参数,然后将控制量输出,实现将PID参数串接构成完整染色体,从而构成遗传空间中的个体,过通过繁殖交叉和变异遗传操作生成新一代群体,经过多次搜索获得适应度值的个体。
当所有温度验证仪厂商都号称无线探头只需每年校准一次时,销售人员一方面为迎合客户对“免前后校“和”布点更方便”的诉求,而以此作为无线产品优于有线产品的卖点(无线产品的利润更高)。另一方面,验证仪销售员不愿因提出必须做前校准和后校验的建议,而令客户误解并产生对其产品质量的担忧。
不同类型仪表的热处理炉配置不同数量的工艺传感器和仪表,凡是数据用于热处理质量判断的工艺温度仪表系统,均应进行校准;凡是数据不用于热处理质量判断的工艺温度仪表系统,则不必进行校准,如仅用于超温报警的仪表系统。对于控制传感器而言,不仅需要对控制仪表的读数进行校准,还要对记录仪表的读数进行校准。对于其他的附加系统,如负载热电偶,有效加热区上次检测确定的高温传感器和低温传感器等系统,需要进行工艺温度仪表系统校准。