通过主观意识借助实体或者虚拟表现构成客观阐述形态结构的一种表达目的的物件(物件并不等于物体,不局限于实体与虚拟、不限于平面与立体)。
模型≠商品。任何物件定义为商品之前的研发过程中形态均为模型,当定义型号、规格并匹配相应价格的时候,模型将会以商品形式呈现出来。
从广义上讲:如果一件事物能随着另一件事物的改变而改变,那么此事物就是另一件事物的模型。模型的作用就是表达不同概念的性质,一个概念可以使很多模型发生不同程度的改变,但只要很少模型就能表达出一个概念的性质,所以一个概念可以通过参考不同的模型从而改变性质的表达形式。
当模型与事物发生联系时会产生一个具有性质的框架,此性质决定模型怎样随事物变化
实体模型
从表现形式分为静模(物理相对静态,本身不具有能量转换的动力系统,不在外部作用力下表现结构及形体构成的完整性)、助力模型(以静模为基础,可借助外界动能的作用,不改变自身表现结构,通过物理运动检测的一种物件结构连接关系)以及动模(可通过能量转换方式产生动能,在自身结构中具有动力转换系统,在能量转换过程中表现出的相对连续物理运动形式)。
虚拟模型
分为虚拟静态模型、虚拟动态模型、虚拟幻想模型。
分布参数和集中参数模型
分布参数模型是用各类偏微分方程描述系统的动态特性,而集中参数模型是用线性或非线性常微分方程来描述系统的动态特性。在许多情况下,分布参数模型借助于空间离散化的方法,可简化为复杂程度较低的集中参数模型。
连续时间和离散时间模型
模型中的时间变量是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型。在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型。离散时间模型是用差分方程描述的。
模型求解
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。
模型分析
对模型解答进行数学上的分析。”横看成岭侧成峰,远近高低各不同"。能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。
模型检验
把数学上分析的结果翻译回到现实问题,并用实际的现象、数据与之比较,检验模型的合理性和适用性。