实体模型
从表现形式分为静模(物理相对静态,本身不具有能量转换的动力系统,不在外部作用力下表现结构及形体构成的完整性)、助力模型(以静模为基础,可借助外界动能的作用,不改变自身表现结构,通过物理运动检测的一种物件结构连接关系)以及动模(可通过能量转换方式产生动能,在自身结构中具有动力转换系统,在能量转换过程中表现出的相对连续物理运动形式)。
虚拟模型
分为虚拟静态模型、虚拟动态模型、虚拟幻想模型。
数学模型
用数学语言描述的一类模型。数学模型可以是一个或一组代数方程、微分方程、差分方程、积分方程或统计学方程,也可以是它们的某种适当的组合,通过这些方程定量地或定性地描述系统各变量之间的相互关系或因果关系。除了用方程描述的数学模型外,还有用其他数学工具,如代数、几何、拓扑、数理逻辑等描述的模型。需要指出的是,数学模型描述的是系统的行为和特征而不是系统的实际结构。
线性和非线性模型
线性模型中各量之间的关系是线性的,可以应用叠加原理,即几个不同的输入量同时作用于系统的响应,等于几个输入量单独作用的响应之和。线性模型简单,应用广泛。非线性模型中各量之间的关系不是线性的,不满足叠加原理。在允许的情况下,非线性模型往往可以线性化为线性模型,方法是把非线性模型在工作点邻域内展成泰勒级数,保留一阶项,略去高阶项,就可得到近似的线性模型。
模型求解
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。
模型分析
对模型解答进行数学上的分析。”横看成岭侧成峰,远近高低各不同"。能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。
模型检验
把数学上分析的结果翻译回到现实问题,并用实际的现象、数据与之比较,检验模型的合理性和适用性。